3.1.63 \(\int \frac {\sqrt {e \sin (c+d x)}}{a+b \cos (c+d x)} \, dx\) [63]

Optimal. Leaf size=302 \[ -\frac {\sqrt {e} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}+\frac {\sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}+\frac {a e \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {a e \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}} \]

[Out]

-arctan(b^(1/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))*e^(1/2)/(-a^2+b^2)^(1/4)/d/b^(1/2)+arctanh(b^(1
/2)*(e*sin(d*x+c))^(1/2)/(-a^2+b^2)^(1/4)/e^(1/2))*e^(1/2)/(-a^2+b^2)^(1/4)/d/b^(1/2)-a*e*(sin(1/2*c+1/4*Pi+1/
2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b-(-a^2+b^2)^(1/2)),2^(1/2
))*sin(d*x+c)^(1/2)/b/d/(b-(-a^2+b^2)^(1/2))/(e*sin(d*x+c))^(1/2)-a*e*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(
1/2*c+1/4*Pi+1/2*d*x)*EllipticPi(cos(1/2*c+1/4*Pi+1/2*d*x),2*b/(b+(-a^2+b^2)^(1/2)),2^(1/2))*sin(d*x+c)^(1/2)/
b/d/(b+(-a^2+b^2)^(1/2))/(e*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.36, antiderivative size = 302, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {2780, 2886, 2884, 335, 304, 211, 214} \begin {gather*} -\frac {\sqrt {e} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{\sqrt {b} d \sqrt [4]{b^2-a^2}}+\frac {\sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt {e} \sqrt [4]{b^2-a^2}}\right )}{\sqrt {b} d \sqrt [4]{b^2-a^2}}+\frac {a e \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b-\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b d \left (b-\sqrt {b^2-a^2}\right ) \sqrt {e \sin (c+d x)}}+\frac {a e \sqrt {\sin (c+d x)} \Pi \left (\frac {2 b}{b+\sqrt {b^2-a^2}};\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{b d \left (\sqrt {b^2-a^2}+b\right ) \sqrt {e \sin (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Sin[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

-((Sqrt[e]*ArcTan[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(Sqrt[b]*(-a^2 + b^2)^(1/4)*d)
) + (Sqrt[e]*ArcTanh[(Sqrt[b]*Sqrt[e*Sin[c + d*x]])/((-a^2 + b^2)^(1/4)*Sqrt[e])])/(Sqrt[b]*(-a^2 + b^2)^(1/4)
*d) + (a*e*EllipticPi[(2*b)/(b - Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt[Sin[c + d*x]])/(b*(b - Sqrt[-a
^2 + b^2])*d*Sqrt[e*Sin[c + d*x]]) + (a*e*EllipticPi[(2*b)/(b + Sqrt[-a^2 + b^2]), (c - Pi/2 + d*x)/2, 2]*Sqrt
[Sin[c + d*x]])/(b*(b + Sqrt[-a^2 + b^2])*d*Sqrt[e*Sin[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 304

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !
GtQ[a/b, 0]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 2780

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
 + b^2, 2]}, Dist[a*(g/(2*b)), Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Dist[a*(g/(2*b)),
 Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Dist[b*(g/f), Subst[Int[Sqrt[x]/(g^2*(a^2 - b^2)
+ b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 2886

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]], Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/
(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && N
eQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {e \sin (c+d x)}}{a+b \cos (c+d x)} \, dx &=-\frac {(a e) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{2 b}+\frac {(a e) \int \frac {1}{\sqrt {e \sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{2 b}-\frac {(b e) \text {Subst}\left (\int \frac {\sqrt {x}}{\left (a^2-b^2\right ) e^2+b^2 x^2} \, dx,x,e \sin (c+d x)\right )}{d}\\ &=-\frac {(2 b e) \text {Subst}\left (\int \frac {x^2}{\left (a^2-b^2\right ) e^2+b^2 x^4} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}-\frac {\left (a e \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}-b \sin (c+d x)\right )} \, dx}{2 b \sqrt {e \sin (c+d x)}}+\frac {\left (a e \sqrt {\sin (c+d x)}\right ) \int \frac {1}{\sqrt {\sin (c+d x)} \left (\sqrt {-a^2+b^2}+b \sin (c+d x)\right )} \, dx}{2 b \sqrt {e \sin (c+d x)}}\\ &=\frac {a e \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {a e \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {e \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e-b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}-\frac {e \text {Subst}\left (\int \frac {1}{\sqrt {-a^2+b^2} e+b x^2} \, dx,x,\sqrt {e \sin (c+d x)}\right )}{d}\\ &=-\frac {\sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}+\frac {\sqrt {e} \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {e \sin (c+d x)}}{\sqrt [4]{-a^2+b^2} \sqrt {e}}\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2} d}+\frac {a e \Pi \left (\frac {2 b}{b-\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b-\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}+\frac {a e \Pi \left (\frac {2 b}{b+\sqrt {-a^2+b^2}};\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right ) \sqrt {\sin (c+d x)}}{b \left (b+\sqrt {-a^2+b^2}\right ) d \sqrt {e \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 4 in optimal.
time = 11.80, size = 361, normalized size = 1.20 \begin {gather*} \frac {2 \cos (c+d x) \left (a+b \sqrt {\cos ^2(c+d x)}\right ) \sqrt {e \sin (c+d x)} \left (\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \left (2 \text {ArcTan}\left (1-\frac {(1+i) \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-2 \text {ArcTan}\left (1+\frac {(1+i) \sqrt {b} \sqrt {\sin (c+d x)}}{\sqrt [4]{-a^2+b^2}}\right )-\log \left (\sqrt {-a^2+b^2}-(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+i b \sin (c+d x)\right )+\log \left (\sqrt {-a^2+b^2}+(1+i) \sqrt {b} \sqrt [4]{-a^2+b^2} \sqrt {\sin (c+d x)}+i b \sin (c+d x)\right )\right )}{\sqrt {b} \sqrt [4]{-a^2+b^2}}+\frac {a F_1\left (\frac {3}{4};\frac {1}{2},1;\frac {7}{4};\sin ^2(c+d x),\frac {b^2 \sin ^2(c+d x)}{-a^2+b^2}\right ) \sin ^{\frac {3}{2}}(c+d x)}{3 \left (a^2-b^2\right )}\right )}{d \sqrt {\cos ^2(c+d x)} (a+b \cos (c+d x)) \sqrt {\sin (c+d x)}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[e*Sin[c + d*x]]/(a + b*Cos[c + d*x]),x]

[Out]

(2*Cos[c + d*x]*(a + b*Sqrt[Cos[c + d*x]^2])*Sqrt[e*Sin[c + d*x]]*(((1/8 + I/8)*(2*ArcTan[1 - ((1 + I)*Sqrt[b]
*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4)] - 2*ArcTan[1 + ((1 + I)*Sqrt[b]*Sqrt[Sin[c + d*x]])/(-a^2 + b^2)^(1/4
)] - Log[Sqrt[-a^2 + b^2] - (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + d*x]] + Log[Sq
rt[-a^2 + b^2] + (1 + I)*Sqrt[b]*(-a^2 + b^2)^(1/4)*Sqrt[Sin[c + d*x]] + I*b*Sin[c + d*x]]))/(Sqrt[b]*(-a^2 +
b^2)^(1/4)) + (a*AppellF1[3/4, 1/2, 1, 7/4, Sin[c + d*x]^2, (b^2*Sin[c + d*x]^2)/(-a^2 + b^2)]*Sin[c + d*x]^(3
/2))/(3*(a^2 - b^2))))/(d*Sqrt[Cos[c + d*x]^2]*(a + b*Cos[c + d*x])*Sqrt[Sin[c + d*x]])

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 545, normalized size = 1.80

method result size
default \(\frac {-\frac {e \sqrt {2}\, \ln \left (\frac {e \sin \left (d x +c \right )-\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}} \sqrt {e \sin \left (d x +c \right )}\, \sqrt {2}+\sqrt {\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}}}{e \sin \left (d x +c \right )+\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}} \sqrt {e \sin \left (d x +c \right )}\, \sqrt {2}+\sqrt {\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}}}\right )}{4 b \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}-\frac {e \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}+1\right )}{2 b \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}-\frac {e \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \sin \left (d x +c \right )}}{\left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}-1\right )}{2 b \left (\frac {e^{2} \left (a^{2}-b^{2}\right )}{b^{2}}\right )^{\frac {1}{4}}}+\frac {e a \sqrt {-\sin \left (d x +c \right )+1}\, \sqrt {2 \sin \left (d x +c \right )+2}\, \left (\sqrt {\sin }\left (d x +c \right )\right ) \left (\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, -\frac {b}{\sqrt {-a^{2}+b^{2}}-b}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}+\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, -\frac {b}{\sqrt {-a^{2}+b^{2}}-b}, \frac {\sqrt {2}}{2}\right ) b -\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {b}{b +\sqrt {-a^{2}+b^{2}}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-a^{2}+b^{2}}+\EllipticPi \left (\sqrt {-\sin \left (d x +c \right )+1}, \frac {b}{b +\sqrt {-a^{2}+b^{2}}}, \frac {\sqrt {2}}{2}\right ) b \right )}{2 b \left (\sqrt {-a^{2}+b^{2}}-b \right ) \left (b +\sqrt {-a^{2}+b^{2}}\right ) \cos \left (d x +c \right ) \sqrt {e \sin \left (d x +c \right )}}}{d}\) \(545\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(d*x+c))^(1/2)/(a+b*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

(-1/4*e/b/(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*ln((e*sin(d*x+c)-(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^
(1/2)+(e^2*(a^2-b^2)/b^2)^(1/2))/(e*sin(d*x+c)+(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x+c))^(1/2)*2^(1/2)+(e^2*(a^
2-b^2)/b^2)^(1/2)))-1/2*e/b/(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(
d*x+c))^(1/2)+1)-1/2*e/b/(e^2*(a^2-b^2)/b^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2*(a^2-b^2)/b^2)^(1/4)*(e*sin(d*x
+c))^(1/2)-1)+1/2*e*a*(-sin(d*x+c)+1)^(1/2)*(2*sin(d*x+c)+2)^(1/2)*sin(d*x+c)^(1/2)/b*(EllipticPi((-sin(d*x+c)
+1)^(1/2),-b/((-a^2+b^2)^(1/2)-b),1/2*2^(1/2))*(-a^2+b^2)^(1/2)+EllipticPi((-sin(d*x+c)+1)^(1/2),-b/((-a^2+b^2
)^(1/2)-b),1/2*2^(1/2))*b-EllipticPi((-sin(d*x+c)+1)^(1/2),b/(b+(-a^2+b^2)^(1/2)),1/2*2^(1/2))*(-a^2+b^2)^(1/2
)+EllipticPi((-sin(d*x+c)+1)^(1/2),b/(b+(-a^2+b^2)^(1/2)),1/2*2^(1/2))*b)/((-a^2+b^2)^(1/2)-b)/(b+(-a^2+b^2)^(
1/2))/cos(d*x+c)/(e*sin(d*x+c))^(1/2))/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

e^(1/2)*integrate(sqrt(sin(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e \sin {\left (c + d x \right )}}}{a + b \cos {\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Integral(sqrt(e*sin(c + d*x))/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sin(d*x+c))^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(e^(1/2)*sqrt(sin(d*x + c))/(b*cos(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {e\,\sin \left (c+d\,x\right )}}{a+b\,\cos \left (c+d\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sin(c + d*x))^(1/2)/(a + b*cos(c + d*x)),x)

[Out]

int((e*sin(c + d*x))^(1/2)/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________